Search results for "X-rays : binarie"

showing 10 items of 20 documents

3D simulations of wind-jet interaction in massive X-ray binaries

2010

High-mass microquasars may produce jets that will strongly interact with surrounding stellar winds on binary system spatial scales. We study the dynamics of the collision between a mildly relativistic hydrodynamical jet of supersonic nature and the wind of an OB star. We performed numerical 3D simulations of jets that cross the stellar wind with the code Ratpenat. The jet head generates a strong shock in the wind, and strong recollimation shocks occur due to the initial overpressure of the jet with its environment. These shocks can accelerate particles up to TeV energies and produce gamma-rays. The recollimation shock also strengthens jet asymmetric Kelvin-Helmholtz instabilities produced i…

X-rays : binaries; ISM: jets and outflows; Stars : winds outflows; Radiation mechanisms: non-thermalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos Xwinds outflows [Stars]Supersonic speedAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)non-thermal [Radiation mechanisms]Shock (fluid dynamics)OB starjets and outflows [ISM]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesOverpressureParticle accelerationDiscontinuity (linguistics)Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)binaries [X-rays]High Energy Physics::ExperimentUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasAstrophysics - High Energy Astrophysical Phenomena:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]Astronomy and Astrophysics
researchProduct

Accrétion et éjection dans les systèmes binaires X transitoires à trous noirs : le cas de GRS 1716-249

2020

I buchi neri transienti (BHT) sono tra le sorgenti con emissione ai raggi X più luminose della galassia. Grazie all’elevato flusso in banda X e alla loro alta variabilità temporale. queste sorgenti offrono un’opportunità unica per studiare la fisica dell’accrescimento in straordinareie condizioni fisiche. I BHT mostrano episodici outburst caratterizzati da diverse luminosità in banda X e γ, diverse forme spettrali e proprietà della variabilità temporale. L’obiettivo di questa tesi è lo studio della geometria, dei meccanismi e dei processi fisici coinvolti nell’emissione del buco nero transiente GRS 716-249. Di seguito presento l’analisi spettrale e temporale delle osservazioni della GRS 171…

AccrétionTrou noir physiqueAccretionX-rays : binaries[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Gamma-rays : generalRayons X : binairesgamma-rays: generalBlack hole physicsDisque d'accrétionX-rays: generalRayons X : généralstars: jetsX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion accretion discsÉtoiles : jetRayons gamma : généralStars : jetsAccretion discsX-rays : general
researchProduct

INTEGRAL long-term monitoring of the Supergiant Fast X-ray Transient XTE J1739-302

2008

In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds.Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. We have used INTEGRAL and RXTE/PCA observations…

X-ray transientAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberContext (language use)AstrophysicsAstrophysicsSpectral lineBinaries : close; Supergiants; X-rays : binaries:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos XAstrophysics::Solar and Stellar AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasAstrophysics::Galaxy AstrophysicsPhysicsAccretion (meteorology)Astrophysics (astro-ph)Astronomy and AstrophysicsLight curveSupergiantsSpace and Planetary ScienceLong term monitoringbinaries [X-rays]Supergiantclose [Binaries]:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]
researchProduct

Study of Two BeppoSAX Observations of GX 340+0

2006

We present the results of two BeppoSAX broad band (0.1–200 keV) observations of the Z-source GX 340+0 comparing our results to those of a previous observation of the source. From the color–color diagram we selected three zones and extracted the source energy spectrum from each zone. We find that the model, composed by a blackbody plus a Comptonized component, absorbed by an equivalent hydrogen column of ~6 × 10 22 cm −2 , well fits the spectra in the energy range below 30 keV. At higher energies a power law component with photon index of 2.5 is observed. The associated flux decreases going from the horizontal branch to the flaring branch of the Z-track.

PhysicsRange (particle radiation)PhotonHydrogenAstrophysics::High Energy Astrophysical PhenomenaFluxAstronomychemistry.chemical_elementAstronomy and Astrophysicsstars : individual (GX 340+0)AstrophysicsHorizontal branchindividual (GX 340+0); X-rays : binaries; X-rays : general [stars]Power lawSpectral linechemistrySpace and Planetary ScienceBlack-body radiationX-rays : binarieX-rays : generalChinese Journal of Astronomy and Astrophysics
researchProduct

High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545

2005

In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral componen…

PhysicsX-rays : binariesScatteringAstrophysics::High Energy Astrophysical Phenomenapulsars : individual : SAX J2103.5+4545Astrophysics (astro-ph)Phase (waves)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiationAstrophysicsSpectral linePulse (physics)Full width at half maximumPulsarbinaries : closeSpace and Planetary Scienceclose; pulsars : individual : SAX J2103.5+4545; X-rays : binaries [binaries]X-ray pulsar
researchProduct

Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54

2008

Context. The source 4U 2206+54 is one of the most enigmatic high-mass X-ray binaries. In spite of intensive searches, X-ray pul- sations have not been detected in the time range 10−3–103 s. A cyclotron line at ∼30 keV has been suggested by various authors but never detected with significance. The stellar wind of the optical companion is abnormally slow. The orbital period, initially reported to be 9.6 days, disappeared and a new periodicity of 19.25 days emerged. Aims. The main objective of our RXTE monitoring of 4U 2206+54 is to study the X-ray orbital variability of the spectral and timing parameters. The new long and uninterrupted RXTE observations allow us to search for long (∼1 h) puls…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical Phenomenapulsars : general [Stars]X-ray binaryFOS: Physical sciencesOrbital eccentricityAstrophysicsAstrophysicsStars : early-type; Stars : emission-line Be; Stars : binaries : close; X-rays : binaries; Stars : pulsars : generalLuminosityearly-type [Stars]:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos XAstrophysics::Solar and Stellar AstrophysicsEccentricity (behavior)binaries : close [Stars]media_commonLine (formation)PhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsOrbital periodLight curveNeutron starSpace and Planetary Scienceemission-line Be [Stars]binaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

2006

We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…

neutron; stars : magnetic fields; pulsars : general; pulsars : individual : IGR J00291+5934; X-ray : binaries [accretion accretion disks; stars]X-rays : binariesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion diskAstrophysicsX-ray : binariesBinary pulsarLuminositypulsars : individual : IGR J00291+5934symbols.namesakePulsarMillisecond pulsarAstrophysics::Solar and Stellar Astrophysicspulsars : individual (IGR J00291+5934)PhysicsAccretion (meteorology)general; pulsars : individual (IGR J00291+5934); stars : magnetic fields; stars : neutron; X-rays : binaries [pulsars]Astrophysics (astro-ph)pulsars : generalStatic timing analysisAstronomystars : magnetic fieldAstronomy and Astrophysicsstars : neutronNeutron starSpace and Planetary SciencesymbolsAstrophysics::Earth and Planetary AstrophysicsDoppler effectX-ray pulsar
researchProduct

High Resolution and Broad Band Spectra of Low Mass X-ray Binaries: A Comparison between Black Holes and Neutron Stars

2005

A common question about compact objects in high energy astrophysics is whether it is possible to distinguish black hole from neutron star systems with some other property that is not the mass of the compact object. Up to now a few characteristics have been found which are typical of neutron stars (like quasi periodic oscillations at kHz frequencies or type-I X-ray bursts), but in many respects black hole and neutron star systems show very similar behaviors. We present here a spectral study of low mass X-ray binaries containing neutron stars and show that these systems have spectral characteristics that are very similar to what is found for black hole systems. This implies that it is unlikel…

PhysicsHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-rayFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysicsindividual : Sco X-1 4U 1705-44; stars : neutron; X-rays : stars; X-rays : binaries; X-rays : general [accretion accretion disks; stars]Compact staraccretion accretion diskAstrophysicsstars : neutronSpectral lineBlack holeNeutron starGeneral Relativity and Quantum Cosmologystars : individual : Sco X-1 4U 1705-44Space and Planetary ScienceX-rays : starX-rays : binarieLow MassX-rays : general
researchProduct

The Role Of General Relativity in the Evolution of Low-Mass X-ray Binaries

2005

We study the evolution of Low Mass X-ray Binaries (LMXBs) and of millisecond binary radio pulsars (MSPs), with numerical simulations that keep into account the evolution of the companion, of the binary system and of the neutron star. According to general relativity, when energy is released, the system loses gravitational mass. Moreover, the neutron star can collapse to a black hole if its mass exceeds a critical limit, that depends on the equation of state. These facts have some interesting consequences: 1) In a MSP the mass-energy is lost with a specific angular momentum that is smaller than the one of the system, resulting in a positive contribution to the orbital period derivative. If th…

Physics:relativityX-rays : binariesGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)pulsars : generalFOS: Physical sciencesrelativity; binaries : close; stars : individual : SAX J1808.4-3658; stars : neutron; pulsars : general; X-rays : binariesAstronomy and AstrophysicsAstrophysicsMoment of inertiaOrbital periodAstrophysicsSpecific relative angular momentumstars : neutronBlack holeNeutron starPulsarstars : individual : SAX J1808.4-3658Space and Planetary Sciencebinaries : closeLow Mass
researchProduct

BeppoSAX observation of 4U 1705-44: detection of hard X-ray emission in the soft state

2007

4U 1705-44 is one of the best studied type I X-ray burster and atoll sources. Since it covers a wide range in luminosity (from a few to 50 x 10^{36} erg s^{-1}) and shows clear spectral state transitions, it represents a good laboratory to test the accretion models proposed for atoll sources. We analysed the energy spectrum accumulated with BeppoSAX observations (43.5 ksec) in August 2000 when the source was in a soft spectral state. The continuum of the wide band energy spectrum is well described by the sum of a blackbody (kT_{bb}~0.56 keV) and a Comptonized component (seed-photon temperature kT_W~1 keV, electron temperature kT_e~2.7 keV, and optical depth ~11). A hard tail was detected at…

PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)stars : individual : 4U 1705-44X-rayFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsaccretion accretion diskAstrophysicsstars : neutronPower lawK-lineSoft stateSpace and Planetary ScienceX-rays : starElectron temperatureBlack-body radiationEmission spectrumindividual : 4U 1705-44; stars : neutron; X-rays : stars; X-rays : binaries; X-rays : general [accretion accretion disks; stars]X-rays : binarieX-rays : generalAstronomy & Astrophysics
researchProduct